论文标题

Wick Theorem和Hopf代数结构在因果扰动量子场理论中

Wick Theorem and Hopf Algebra Structure in Causal Perturbative Quantum Field Theory

论文作者

Grigore, Dan-Radu

论文摘要

我们考虑纯阳米尔斯模型的扰动量子场理论的一般框架。我们使用HOPF代数符号为年代产品而不是Feynman图提供了更精确的Wick定理版本。接下来,我们证明可以保留所有情况下的Wick扩展属性,以$ n = 2。$,但是,对于Wick Systomials的时间顺序,规格不变性被打破。

We consider the general framework of perturbative quantum field theory for the pure Yang-Mills model. We give a more precise version of the Wick theorem using Hopf algebra notations for chronological products and not for Feynman graphs. Next we prove that Wick expansion property can be preserved for all cases in order $ n = 2. $ However, gauge invariance is broken for chronological products of Wick submonomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源