论文标题
无关紧要,纯化相关:从特征角度克服文本伪造相关性
Decorrelate Irrelevant, Purify Relevant: Overcome Textual Spurious Correlations from a Feature Perspective
论文作者
论文摘要
自然语言理解(NLU)模型倾向于依靠虚假的相关性(即数据集偏见)来在分布数据集上实现高性能,但在分布外部的数据集上的性能较差。大多数现有的证据方法通常都以偏见的特征(即引起这种虚假相关性的表面特征)来识别和削弱这些样本。但是,下降加权这些样品阻碍了从这些样品的无偏见部分学习的模型。为了应对这一挑战,在本文中,我们建议从特征空间的角度以细粒度的方式消除虚假的相关性。具体而言,我们引入了随机的傅立叶特征和加权重采样,以将功能之间的依赖关系降低以减轻虚假相关性。在获得非相关的功能后,我们进一步设计了一种基于相互信息的方法来净化它们,这迫使模型学习与任务更相关的功能。对两个经过良好研究的NLU任务进行的广泛实验表明,我们的方法优于其他比较方法。
Natural language understanding (NLU) models tend to rely on spurious correlations (i.e., dataset bias) to achieve high performance on in-distribution datasets but poor performance on out-of-distribution ones. Most of the existing debiasing methods often identify and weaken these samples with biased features (i.e., superficial surface features that cause such spurious correlations). However, down-weighting these samples obstructs the model in learning from the non-biased parts of these samples. To tackle this challenge, in this paper, we propose to eliminate spurious correlations in a fine-grained manner from a feature space perspective. Specifically, we introduce Random Fourier Features and weighted re-sampling to decorrelate the dependencies between features to mitigate spurious correlations. After obtaining decorrelated features, we further design a mutual-information-based method to purify them, which forces the model to learn features that are more relevant to tasks. Extensive experiments on two well-studied NLU tasks demonstrate that our method is superior to other comparative approaches.