论文标题
lipschitz中的schauder基础,$ \ mathcal {l} _ \ infty $ - 空格的净空间
Schauder basis in Lipschitz free spaces over nets of $\mathcal{L}_\infty$-spaces
论文作者
论文摘要
在本说明中,我们为Lipschitz自由空间$ \ Mathcal {f}(n)$的Schauder基础提供了一个构造(基于撤退的论点),在任何可分开的无限无限尺寸$ \ Mathcal {l} _ \ iffty $ space $ -space $ -space $ x $ x $ x $中的净$ n $。特别是,这是无限尺寸Banach Space $ x $不包含$ C_0 $的第一个示例。
In the present note we give a construction (based on a retractional argument) of a Schauder basis for the Lipschitz free space $\mathcal{F}(N)$, over a net $N$ in any separable infinite dimensional $\mathcal{L}_\infty$-space $X$. In particular, this yields the first example of an infinite dimensional Banach space $X$ not containing $c_0$ with such a property.