论文标题
改进了顶级矢量近似的随机SVD的分析
Improved analysis of randomized SVD for top-eigenvector approximation
论文作者
论文摘要
计算矩阵的最高特征向量是各个领域的基本兴趣的问题。尽管大多数文献都集中在分析与检索到的特征向量相关的低级矩阵的重建误差,但在许多应用中,人们有兴趣找到一个具有较高雷利商的向量。在本文中,我们研究了近似顶级向量的问题。给定一个具有最大特征值$λ_1$的对称矩阵$ \ mathbf {a} $,我们的目标是找到一个向量\ hu,该vector \ hu近似于领先的eigenVector $ \ mathbf {u} $ r(\ hat {\ mathbf {u}})=λ_1^{ - 1} {\ hat {\ mathbf {u}}}^t \ mathbf {a } \ hat {\ Mathbf {u}}}}/{\ hat {\ MathBf {u}}}^t \ hat {\ Mathbf {u}}} $。我们对\ citet {halko2011 -finding}的随机SVD算法进行了新的分析,并在许多感兴趣的情况下得出了紧密的界限。值得注意的是,这是提供$ r(\ hat {\ mathbf {u}}} $的非平凡界限的第一项,并为随机svd提供了任何数量的迭代。我们的理论分析补充了一项彻底的实验研究,该研究证实了该方法的效率和准确性。
Computing the top eigenvectors of a matrix is a problem of fundamental interest to various fields. While the majority of the literature has focused on analyzing the reconstruction error of low-rank matrices associated with the retrieved eigenvectors, in many applications one is interested in finding one vector with high Rayleigh quotient. In this paper we study the problem of approximating the top-eigenvector. Given a symmetric matrix $\mathbf{A}$ with largest eigenvalue $λ_1$, our goal is to find a vector \hu that approximates the leading eigenvector $\mathbf{u}_1$ with high accuracy, as measured by the ratio $R(\hat{\mathbf{u}})=λ_1^{-1}{\hat{\mathbf{u}}^T\mathbf{A}\hat{\mathbf{u}}}/{\hat{\mathbf{u}}^T\hat{\mathbf{u}}}$. We present a novel analysis of the randomized SVD algorithm of \citet{halko2011finding} and derive tight bounds in many cases of interest. Notably, this is the first work that provides non-trivial bounds of $R(\hat{\mathbf{u}})$ for randomized SVD with any number of iterations. Our theoretical analysis is complemented with a thorough experimental study that confirms the efficiency and accuracy of the method.