论文标题

不可约合的整合模块,用于由理性量子圆环协调的完整圆环谎言代数

Irreducible Integrable Modules for the full Toroidal Lie Algebras co-ordinated by Rational Quantum Torus

论文作者

Tantubay, Santanu, Batra, Punita

论文摘要

令$ \ mathbb {c} _q $为与$(n+1)\ times(n+1)$合理量子矩阵$ q $相关的非交换laurent laurent多项式环。令$ \ mathfrak {sl} _d(\ mathbb {c} _q)\ oplus hc_1(\ mathbb {c} _q)$是lie subalgebra $ \ mathfrak {sl} {sl} _d} _d _d(\ mathbb {\ mathbb {\ mathbb {c} c} _q} _q} q} _q} q} $ $ \ mathfrak {gl} _d(\ mathbb {c} _q)$。现在,让我们采取Lie代数$τ= \ Mathfrak {gl} _d(\ Mathbb {c} _Q)\ oplus hc_1(\ Mathbb {c} _Q)$。令$ der(\ mathbb {c} _q)$为$ \ mathbb {c} _q $的所有派生的lie代数。现在,我们考虑Lie代数$ \tildeτ=τ\ rtimes der(\ mathbb {c} _q)$,称为由Ronical Quantum tori协调的完整的toroidal lie代数。在本文中,我们获得了不可约合的集成模块的分类,该模块具有有限的尺寸重量空间,用于$ \tildeτ$,在模块上具有非零中央动作。

Let $\mathbb{C}_q$ be a non-commutative Laurent polynomial ring associated with a $(n+1)\times (n+1)$ rational quantum matrix $q$. Let $\mathfrak{sl}_d(\mathbb{C}_q)\oplus HC_1(\mathbb{C}_q)$ be the universal central extension of Lie subalgebra $\mathfrak{sl}_d(\mathbb{C}_q)$ of $\mathfrak{gl}_d(\mathbb{C}_q)$. Now let us take the Lie algebra $τ=\mathfrak{gl}_d(\mathbb{C}_q)\oplus HC_1(\mathbb{C}_q)$. Let $Der(\mathbb{C}_q)$ be the Lie algebra of all derivations of $\mathbb{C}_q$. Now we consider the Lie algebra $\tildeτ=τ\rtimes Der(\mathbb{C}_q)$, called as full toroidal Lie algebra co-ordinated by rational quantum tori. In this paper we get a classification of irreducible integrable modules with finite dimensional weight spaces for $\tildeτ$ with nonzero central action on the modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源