论文标题
在弱噪声极限中振荡的连贯性
Coherence of oscillations in the weak-noise limit
论文作者
论文摘要
在嘈杂的环境中,振荡使它们的连贯性松散,这可以以质量因素为特征。我们确定了沿弱噪声极限沿周期性的一维电位沿周期性的一维电位沿驱动的Fokker-Planck动力学产生的振荡质量因子。使用此表达式,我们可以证明该连续模型的类似物的类似物是在离散马尔可夫网络模型中猜想的振荡相干性的。我们表明,我们的方法也可以沿嘈杂的二维极限周期来适应运动。具体而言,我们将方案应用于嘈杂的Stuart-Landau振荡器,并将热力学一致的Brusselator作为化学时钟的简单模型。因此,我们的方法基于汉密尔顿 - 雅各比理论的技术来补充相当复杂的现有的一般框架,我们将其通过数值比较结果进行比较。
In a noisy environment, oscillations loose their coherence which can be characterized by a quality factor. We determine this quality factor for oscillations arising from a driven Fokker-Planck dynamics along a periodic one-dimensional potential analytically in the weak noise limit. With this expression, we can prove for this continuum model the analog of an upper bound that has been conjectured for the coherence of oscillations in discrete Markov network models. We show that our approach can also be adapted to motion along a noisy two-dimensional limit cycle. Specifically, we apply our scheme to the noisy Stuart-Landau oscillator and the thermodynamically consistent Brusselator as a simple model for a chemical clock. Our approach thus complements the fairly sophisticated extant general framework based on techniques from Hamilton-Jacobi theory with which we compare our results numerically.