论文标题

激进表达的身份测试

Identity Testing for Radical Expressions

论文作者

Balaji, Nikhil, Nosan, Klara, Shirmohammadi, Mahsa, Worrell, James

论文摘要

我们研究了激进的身份测试问题(RIT):给定代数代表多项式$ f \ in \ mathbb {z} [x_1,\ ldots,x_k] $和非阴性整数$ a_1,\ ldots,\ ldots,a_k $ and $ d_1,$ ddots,$ ddots,$ ddots,$ ldots,$ ldots,$ ldots,$ ldots,$ ldots,$ ldots,在真实的激进分子$ \ sqrt [d_1] {a_1},\ ldots,\ sqrt [d_k] {a_k} $,即测试$ f(\ sqrt [d_1] {a_1}假设普遍的Riemann假设(GRH),我们将问题置于综合中,从而改善了通过还原为真实的存在理论获得的直接Pspace上限。接下来,我们考虑一个限制版本,称为$ 2 $ rit,其中激进的是用二进制编写的质数的正方形。自Chen和Kao的工作以来,人们已经知道$ 2 $ rit至少与多项式身份测试问题一样困难,但是在我们工作之前已经知道了比PSPACE更好的上限。我们表明,假设GRH并无条件地统一,$ 2 $ rit在Corp中。我们的证明依赖于代数和分析数理论的定理,例如Chebotarev密度定理和二次互惠。

We study the Radical Identity Testing problem (RIT): Given an algebraic circuit representing a polynomial $f\in \mathbb{Z}[x_1, \ldots, x_k]$ and nonnegative integers $a_1, \ldots, a_k$ and $d_1, \ldots,$ $d_k$, written in binary, test whether the polynomial vanishes at the real radicals $\sqrt[d_1]{a_1}, \ldots,\sqrt[d_k]{a_k}$, i.e., test whether $f(\sqrt[d_1]{a_1}, \ldots,\sqrt[d_k]{a_k}) = 0$. We place the problem in coNP assuming the Generalised Riemann Hypothesis (GRH), improving on the straightforward PSPACE upper bound obtained by reduction to the existential theory of reals. Next we consider a restricted version, called $2$-RIT, where the radicals are square roots of prime numbers, written in binary. It was known since the work of Chen and Kao that $2$-RIT is at least as hard as the polynomial identity testing problem, however no better upper bound than PSPACE was known prior to our work. We show that $2$-RIT is in coRP assuming GRH and in coNP unconditionally. Our proof relies on theorems from algebraic and analytic number theory, such as the Chebotarev density theorem and quadratic reciprocity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源