论文标题

聚类启用了几个射击负载预测

Clustering Enabled Few-Shot Load Forecasting

论文作者

Wang, Qiyuan, Chen, Zhihui, Wu, Chenye

论文摘要

尽管高级机器学习算法在负载预测中有效,但它们通常会遭受数据利用率较低,因此它们的出色性能依赖于大量数据集。这促使我们通过改进的数据利用来设计机器学习算法。具体而言,我们仅通过观察其能耗的几镜头(数据点)来考虑系统中新用户的负载预测。该任务具有挑战性,因为有限的样本不足以利用时间特征,这对于预测负载至关重要。尽管如此,我们注意到由于人类的生活方式有限,住宅负荷没有太多的时间特征。因此,我们建议利用现有用户的历史负载概况数据进行有效的聚类,这减轻了有限样本带来的挑战。具体而言,我们首先设计了一种用于对历史数据进行分类的功能提取聚类方法。然后,从聚类结果继承先前的知识,我们建议使用两相长期内存(LSTM)模型来为新用户进行负载预测。提出的方法的表现优于传统的LSTM模型,尤其是当训练样本量无法涵盖整个时期时(即我们的任务24小时)。关于两个现实世界数据集和一个合成数据集的广泛案例研究验证了我们方法的有效性和效率。

While the advanced machine learning algorithms are effective in load forecasting, they often suffer from low data utilization, and hence their superior performance relies on massive datasets. This motivates us to design machine learning algorithms with improved data utilization. Specifically, we consider the load forecasting for a new user in the system by observing only few shots (data points) of its energy consumption. This task is challenging since the limited samples are insufficient to exploit the temporal characteristics, essential for load forecasting. Nonetheless, we notice that there are not too many temporal characteristics for residential loads due to the limited kinds of human lifestyle. Hence, we propose to utilize the historical load profile data from existing users to conduct effective clustering, which mitigates the challenges brought by the limited samples. Specifically, we first design a feature extraction clustering method for categorizing historical data. Then, inheriting the prior knowledge from the clustering results, we propose a two-phase Long Short Term Memory (LSTM) model to conduct load forecasting for new users. The proposed method outperforms the traditional LSTM model, especially when the training sample size fails to cover a whole period (i.e., 24 hours in our task). Extensive case studies on two real-world datasets and one synthetic dataset verify the effectiveness and efficiency of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源