论文标题
Belle II像素探测器数据中受监督和无监督的异常检测的比较
Comparison of Supervised and Unsupervised Anomaly Detection in Belle II Pixel Detector Data
论文作者
论文摘要
机器学习已成为鉴定粒子对撞机实验中暗物质候选者的流行工具。它们可以处理大型数据集的处理,因此适合直接在来自检测器的原始数据上操作,而不是重建对象。在这里,我们调查了Belle II像素检测器记录的原始像素命中的模式,该模式自2019年以来运行,目前具有4 M像素和触发速率高达5 kHz。特别是,我们专注于无需理论模型的无监督技术。这些模型不足的方法允许对数据进行公正的探索,同时滤除可能暗示新物理场景的异常检测器特征。我们使用自组织的kohonen映射和自动编码器对Belle II束背景的假设磁单孔的鉴定。将两种无监督的算法与卷积多层感知器进行比较,并在高背景排斥水平下发现了较高的信号效率。我们的结果加强了使用无监督的机器学习技术来补充粒子山脉的传统搜索策略的案例,并为在不久的将来为算法的潜在在线应用铺平了道路。
Machine learning has become a popular instrument for the identification of dark matter candidates at particle collider experiments. They enable the processing of large datasets and are therefore suitable to operate directly on raw data coming from the detector, instead of reconstructed objects. Here, we investigate patterns of raw pixel hits recorded by the Belle II pixel detector, that is operational since 2019 and presently features 4 M pixels and trigger rates up to 5 kHz. In particular, we focus on unsupervised techniques that operate without the need for a theoretical model. These model-agnostic approaches allow for an unbiased exploration of data, while filtering out anomalous detector signatures that could hint at new physics scenarios. We present the identification of hypothetical magnetic monopoles against Belle II beam background using Self-Organizing Kohonen Maps and Autoencoders. The two unsupervised algorithms are compared to a convolutional Multilayer Perceptron and a superior signal efficiency is found at high background rejection levels. Our results strengthen the case for using unsupervised machine learning techniques to complement traditional search strategies at particle colliders and pave the way to potential online applications of the algorithms in the near future.