论文标题
跨越量子临界点的多部分纠缠
Multipartite Entanglement in Crossing the Quantum Critical Point
论文作者
论文摘要
我们研究了越过临界点的缓慢量子淬灭的多部分纠缠。我们将分别是局部和完整连接的量子系统的量子模型和Lipkin-Meshkov-Glick模型。多部分纠缠通过量子渔民信息进行量化,其发电机被定义为铁磁序参数的操作员。淬灭动力学以顺磁相的基态开始,然后将横向场缓慢驱动以越过量子临界点,并以零横向场结束。对于基于矩阵乘积状态的方法的量子模型,我们计算了最终状态的量子Fisher信息密度。线性和非线性淬灭的数值结果表明,最终状态尺度的量子渔民信息密度是淬灭速率的功率定律,这总体上符合对千里布尔 - Zurek机制的预测,并具有较小的校正。我们表明,这种校正是由远程行为引起的。我们还计算Lipkin-Meshkov-Glick模型中的量子Fisher信息密度。结果表明,在此完整连接系统中量子Fisher信息的缩放比较符合Kibble-Zurek机制,因为在此非局部系统中无法定义远距离物理学。我们的结果表明,多部分纠缠提供了一种替代观点,可以理解量子相变的动力学,特别是非平凡的远距离物理学。
We investigate the multipartite entanglement for a slow quantum quench crossing a critical point. We consider the quantum Ising model and the Lipkin-Meshkov-Glick model, which are local and full-connected quantum systems, respectively. The multipartite entanglement is quantified by quantum Fisher information with the generator defined as the operator of the ferromagnetic order parameter. The quench dynamics begins with a ground state in a paramagnetic phase, and then the transverse field is driven slowly to cross a quantum critical point, and ends with a zero transverse field. For the quantum Ising model, based on methods of matrix product states, we calculate the quantum Fisher information density of the final state. Numerical results of both linear and nonlinear quenches show that the quantum Fisher information density of the final state scales as a power law of the quench rate, which overall conforms to the prediction of the Kibble-Zurek mechanism with a small correction. We show that this correction results from the long-range behaviors. We also calculate the quantum Fisher information density in the Lipkin-Meshkov-Glick model. The results show that the scaling of quantum Fisher information in this full-connected system conforms to the Kibble-Zurek mechanism better, since the long-range physics cannot be defined in this nonlocal system. Our results reveal that the multipartite entanglement provides an alternative viewpoint to understand the dynamics of quantum phase transitions, specifically, the nontrivial long-range physics.