论文标题

在动态富散射环境中,可重构智能表面的深度学习辅助配置

Deep-Learning-Assisted Configuration of Reconfigurable Intelligent Surfaces in Dynamic rich-scattering Environments

论文作者

Stylianopoulos, Kyriakos, Shlezinger, Nir, del Hougne, Philipp, Alexandropoulos, George C.

论文摘要

可重新配置的智能表面(RISS)集成到无线环境中,使渠道具有可编程性,并有望在未来的通信标准中发挥关键作用。迄今为止,大多数与RIS相关的工作都集中在无数量空间上,其中无线通道通常是分析建模的。但是,在丰富的散落环境中发生了许多现实的通信方案,这些环境动态发展。这些条件在确定优化可实现的通信率的RIS配置方面面临着巨大的挑战。在本文中,我们迈出了解决这一挑战的第一步。基于忠于基础波物理的模拟器,我们将深度神经网络作为替代前向模型训练,以捕获无线通道在动态丰富的散落条件下对RIS配置的随机依赖性。随后,我们将此模型与遗传算法结合使用,以识别优化通信速率的RIS配置。我们从数值上证明了提出的调整RIS的方法可以提高富分散设置中可实现的速率的能力。

The integration of Reconfigurable Intelligent Surfaces (RISs) into wireless environments endows channels with programmability, and is expected to play a key role in future communication standards. To date, most RIS-related efforts focus on quasi-free-space, where wireless channels are typically modeled analytically. Many realistic communication scenarios occur, however, in rich-scattering environments which, moreover, evolve dynamically. These conditions present a tremendous challenge in identifying an RIS configuration that optimizes the achievable communication rate. In this paper, we make a first step toward tackling this challenge. Based on a simulator that is faithful to the underlying wave physics, we train a deep neural network as surrogate forward model to capture the stochastic dependence of wireless channels on the RIS configuration under dynamic rich-scattering conditions. Subsequently, we use this model in combination with a genetic algorithm to identify RIS configurations optimizing the communication rate. We numerically demonstrate the ability of the proposed approach to tune RISs to improve the achievable rate in rich-scattering setups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源