论文标题

近乎最佳的TOP-K模式开采

Near-optimal Top-k Pattern Mining

论文作者

Wang, Xin, Lan, Zhuo, He, Yu-Ang, Wang, Yang, Liu, Zhi-Gui, Xie, Wen-Bo

论文摘要

如今,大图上的频繁模式采矿(FPM)受到越来越多的关注,因为这对于各种应用至关重要,例如社交分析。非正式地,FPM问题定义为在大图中找到所有模式,其频率高于用户定义的阈值。但是,由于采矿过程中无法承受的计算和空间成本,因此这个问题是不平凡的。鉴于此,我们提出了一种经济有效的方法来采矿近乎最佳的TOP-K模式。我们的方法采用“级别”策略来逐步检测频繁的模式,因此,一旦发现了TOP-K模式,就可以终止。此外,我们开发了一种技术,以智能遍历策略和紧凑的数据结构来计算支持的下限。关于现实生活和合成图的广泛实验研究表明,我们的方法表现良好,即,它在效率,记忆足迹,回忆和可伸缩性方面的表现优于传统的对应物。

Nowadays, frequent pattern mining (FPM) on large graphs receives increasing attention, since it is crucial to a variety of applications, e.g., social analysis. Informally, the FPM problem is defined as finding all the patterns in a large graph with frequency above a user-defined threshold. However, this problem is nontrivial due to the unaffordable computational and space costs in the mining process. In light of this, we propose a cost-effective approach to mining near-optimal top-k patterns. Our approach applies a "level-wise" strategy to incrementally detect frequent patterns, hence is able to terminate as soon as top-k patterns are discovered. Moreover, we develop a technique to compute the lower bound of support with smart traverse strategy and compact data structures. Extensive experimental studies on real-life and synthetic graphs show that our approach performs well, i.e., it outperforms traditional counterparts in efficiency, memory footprint, recall and scalability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源