论文标题

查看构成代数进行临时比较

View Composition Algebra for Ad Hoc Comparison

论文作者

Wu, Eugene

论文摘要

比较是视觉分析中的核心任务。尽管有许多指南可以帮助用户设计有效的可视化以帮助已知的比较任务,但是当用户想要在数据探索和视觉分析过程中进行标记,趋势或图表之间的临时比较时,几乎没有任何技术可用。例如,为了比较不同年份的投票计数图,线图中的两个股票趋势,或一个国家GDP的散点图与平均GDP的文本摘要。理想情况下,用户可以直接选择比较目标并进行比较,但是可视化的哪些元素应该是候选目标,哪些目标的组合可以安全地比较,哪些比较操作有意义?本文提出了一个概念模型,该模型允许用户使用一组汇总,计算差异,合并和建模其操作数的组成操作员组成值,标记,传奇元素和图表的组合。我们进一步定义了与基于数据存储的可视化兼容的视图组成代数(VCA),它基于此代数来得出一个支持临时视觉比较的交互设计,并通过多种用例说明了其效用。

Comparison is a core task in visual analysis. Although there are numerous guidelines to help users design effective visualizations to aid known comparison tasks, there are few techniques available when users want to make ad hoc comparisons between marks, trends, or charts during data exploration and visual analysis. For instance, to compare voting count maps from different years, two stock trends in a line chart, or a scatterplot of country GDPs with a textual summary of the average GDP. Ideally, users can directly select the comparison targets and compare them, however what elements of a visualization should be candidate targets, which combinations of targets are safe to compare, and what comparison operations make sense? This paper proposes a conceptual model that lets users compose combinations of values, marks, legend elements, and charts using a set of composition operators that summarize, compute differences, merge, and model their operands. We further define a View Composition Algebra (VCA) that is compatible with datacube-based visualizations, derive an interaction design based on this algebra that supports ad hoc visual comparisons, and illustrate its utility through several use cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源