论文标题

与非线性扩散的PDE耦合系统中的行进波

Travelling waves in a PDE-ODE coupled system with nonlinear diffusion

论文作者

Mitra, Koondanibha, Hughes, Jack M., Sonner, Stefanie, Eberl, Hermann J., Dockery, Jack D.

论文摘要

我们分析了由ode组成的非线性系统的行驶波(TW)溶液,该系统与脱位PDE相结合,并具有扩散系数,随着溶液趋于零并在接近其最大值时会消失。先前已经在数值上以及有关纤维溶性生物膜生长的生物学实验中观察到了此类系统的稳定TW溶液。在这项工作中,我们为这些观察结果提供了分析依据,并证明了此类模型的TW解决方案的存在和稳定性结果。 使用TW ANSATZ和第一个积分,将系统简化为具有两个未知数的自主动力学系统。在相应的相平面中分析系统时,显示了独特的TW的存在,具有锋利的前部和扩散的尾巴,并且以恒定的速度移动。在两个空间维度中TW的线性稳定性在初始数据的合适假设下已证明。最后,提出了数值模拟,以肯定TWS的存在,稳定性和参数依赖性的理论预测。

We analyze travelling wave (TW) solutions for nonlinear systems consisting of an ODE coupled to a degenerate PDE with a diffusion coefficient that vanishes as the solution tends to zero and blows up as it approaches its maximum value. Stable TW solutions for such systems have previously been observed numerically as well as in biological experiments on the growth of cellulolytic biofilms. In this work, we provide an analytical justification for these observations and prove existence and stability results for TW solutions of such models. Using the TW ansatz and a first integral, the system is reduced to an autonomous dynamical system with two unknowns. Analysing the system in the corresponding phase-plane, the existence of a unique TW is shown, which possesses a sharp front and a diffusive tail, and is moving with a constant speed. The linear stability of the TW in two space dimensions is proven under suitable assumptions on the initial data. Finally, numerical simulations are presented that affirm the theoretical predictions on the existence, stability, and parametric dependence of the TWs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源