论文标题
$ \ Mathcal {n} = 4 $ SYM:II的Wilson Loop上的大量费用。量子波动,OPE和光谱曲线
Large Charges on the Wilson Loop in $\mathcal{N}=4$ SYM: II. Quantum Fluctuations, OPE, and Spectral Curve
论文作者
论文摘要
我们继续研究由平面$ \ MATHCAL {N} = 4 $超对称Yang-Mills理论定义的缺陷CFT的大电荷限制。在本文中,我们将$ 1/j $校正计算到两个重量插入电荷$ j $和两个轻度插入的相关功能,在双缩放限制中,充电$ j $和't hooft耦合$λ$以$ j/\ j/\sqrtλ$固定的比率发送给了无限。从全外,它们对应于具有较大角动量的经典字符串解决方案周围的量子波动,并且可以通过评估Green在世界表格上的功能来计算。我们根据复杂的傅立叶空间中的残基的总和来得出绿色功能的表示,并表明它导致了沉重光通道中的保形块膨胀。这使我们能够为非保护DCFT操作员的无限塔提取缩放维度和结构常数。我们还发现了我们的结果与字符串Sigma模型的半古典集成性之间的密切联系。绿色空间中绿色功能的一系列极点对应于频谱曲线上所谓的准摩托明满足量化条件的频谱曲线上的点,并且缩放尺寸和重型光通道中的结构常数均以光谱曲线的形式写入简单形式。这些观察结果表明,Gromov,Schafer-Nameki和Vieira对封闭字符串的半经典能量扩展了结果,特别是暗示了直接从光谱曲线确定结构常数的可能性。
We continue our study of large charge limits of the defect CFT defined by the half-BPS Wilson loop in planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory. In this paper, we compute $1/J$ corrections to the correlation function of two heavy insertions of charge $J$ and two light insertions, in the double scaling limit where the charge $J$ and the 't Hooft coupling $λ$ are sent to infinity with the ratio $J/\sqrtλ$ fixed. Holographically, they correspond to quantum fluctuations around a classical string solution with large angular momentum, and can be computed by evaluating Green's functions on the worldsheet. We derive a representation of the Green's functions in terms of a sum over residues in the complexified Fourier space, and show that it gives rise to the conformal block expansion in the heavy-light channel. This allows us to extract the scaling dimensions and structure constants for an infinite tower of non-protected dCFT operators. We also find a close connection between our results and the semi-classical integrability of the string sigma model. The series of poles of the Green's functions in Fourier space corresponds to points on the spectral curve where the so-called quasi-momentum satisfies a quantization condition, and both the scaling dimensions and the structure constants in the heavy-light channel take simple forms when written in terms of the spectral curve. These observations suggest extensions of the results by Gromov, Schafer-Nameki and Vieira on the semiclassical energy of closed strings, and in particular hint at the possibility of determining the structure constants directly from the spectral curve.