论文标题
二维异质结构硼的设计原理和物理特性
Design Principles and Physical Properties of Two-Dimensional Heterostructured Borides
论文作者
论文摘要
提出了设计的设计原理,以创建动态稳定的过渡金属,灯笼和基于acttinide的低维硼。对供体金属原子对电子不足的蜂窝B晶格的电荷转移分析允许预测托管迪拉克状态的复杂共价异质结构。使用第一原理计算计算的声子光谱的分析支持了适用的准则,以证明纳米厚的异质结构的物理稳定性。类似或不同的分层硼化物可以以逐层的方式彼此堆叠,从而创建一个与单个层根本上不同的界面,开设一个丰富的操场,以探索新颖的物理特性和新材料。研究了诸如多个狄拉克状态,高度分散的电子带和脱钩的声学声子等功能。具有吸引力的电子特性和物理实现的结合,可以使预测的分层硼砂有希望的材料整合新一代的二维材料。
Principles of design to create dynamically stable transition metal, lanthanide, and actinide based low-dimensional borides are presented. A charge transfer analysis of donor metal atoms to electron deficient honeycombed B lattices allows to predict complex covalent heterostructures hosting Dirac states. The applicable guidelines are supported with the analysis of phonon spectra computed with first-principles calculations to demonstrate the physical stability of nanometer-thick heterostructures. Similar or dissimilar layered borides can be stacked on top of each other in a layer-by-layer fashion creating an interface that can be fundamentally different from the individual layers, opening a rich playground to explore novel physical properties and new materials. Functionalities such as multiple Dirac states, highly dispersive electronic bands, and decoupled acoustic-optical phonon are studied. The combination of appealing electronic properties and physical realization make of predicted layered borides promising materials to integrate a new generation of two-dimensional materials.