论文标题
在经典的二维Heisenberg和$ \ mathrm {rp}^2 $模型中对比鲜明的伪临界性
Contrasting pseudo-criticality in the classical two-dimensional Heisenberg and $\mathrm{RP}^2$ models: zero-temperature phase transition versus finite-temperature crossover
论文作者
论文摘要
张量 - 网络方法用于对二维经典海森伯格和$ \ mathrm {rp}^2 $模型进行比较研究。我们证明,具有显式$ \ mathrm {so}(3)的均匀矩阵产品状态(MPS)$对称性可以准确地探测最多可探测$ \ Mathcal {o}(10^3)$站点,我们研究了MPS -intangement intangement intangement Entrypropy和通用特征的范围范围。对于海森堡模型,我们没有发现有限温度相变的迹象,支持渐近自由的情况。对于$ \ mathrm {rp}^2 $模型,我们观察到缩放行为的突然发作,这与先前研究中报道的有限温度相变的提示一致。仔细分析相关长度差异,纠缠熵的尺度和MPS纠缠光谱的缩放表明,我们的结果与真正的危险性不一致,但既符合伪造区域的交叉场景,均表现出较大范围的nematic quasi quassi quassi-pressigation correles correl correles sely correl correle valitians percor searter selim percore selire correle vality percor serige correl的范围。我们的结果揭示了海森堡和$ \ mathrm {rp}^2 $模型之间的缩放比例行为的根本差异:而如果键尺寸增加,则在前者中缩放的出现在零温度中的出现,如果键尺寸增加,则发生在后者的有限键键差异的独立交叉温度下。
Tensor-network methods are used to perform a comparative study of the two-dimensional classical Heisenberg and $\mathrm{RP}^2$ models. We demonstrate that uniform matrix product states (MPS) with explicit $\mathrm{SO}(3)$ symmetry can probe correlation lengths up to $\mathcal{O}(10^3)$ sites accurately, and we study the scaling of entanglement entropy and universal features of MPS entanglement spectra. For the Heisenberg model, we find no signs of a finite-temperature phase transition, supporting the scenario of asymptotic freedom. For the $\mathrm{RP}^2$ model we observe an abrupt onset of scaling behaviour, consistent with hints of a finite-temperature phase transition reported in previous studies. A careful analysis of the softening of the correlation length divergence, the scaling of the entanglement entropy and the MPS entanglement spectra shows that our results are inconsistent with true criticality, but are rather in agreement with the scenario of a crossover to a pseudo-critical region which exhibits strong signatures of nematic quasi-long-range order at length scales below the true correlation length. Our results reveal a fundamental difference in scaling behaviour between the Heisenberg and $\mathrm{RP}^2$ models: Whereas the emergence of scaling in the former shifts to zero temperature if the bond dimension is increased, it occurs at a finite bond-dimension independent crossover temperature in the latter.