论文标题

无监督的群体不变和模棱两可的表示

Unsupervised Learning of Group Invariant and Equivariant Representations

论文作者

Winter, Robin, Bertolini, Marco, Le, Tuan, Noé, Frank, Clevert, Djork-Arné

论文摘要

模棱两可的神经网络,其隐藏的特征根据对数据作用的G组的表示形式转换,表现出训练效率和提高的概括性能。在这项工作中,我们将群体不变且模棱两可的表示学习扩展到无监督的深度学习领域。我们根据编码器框架提出了一种通用学习策略,其中潜在表示以不变术语和模棱两可的组动作组件分开。关键的想法是,通过学习预测适当的组操作以对齐输入和输出姿势以解决重建任务的适当组动作,通过学习预测适当的组操作来编码和从组不变表示形式进行编码和解码数据。我们在Equivariant编码器上得出了必要的条件,并提出了对任何G的构造,无论是离散和连续的。我们明确描述了我们的旋转,翻译和排列的构造。我们在采用不同网络体系结构的各种数据类型的各种实验中测试了方法的有效性和鲁棒性。

Equivariant neural networks, whose hidden features transform according to representations of a group G acting on the data, exhibit training efficiency and an improved generalisation performance. In this work, we extend group invariant and equivariant representation learning to the field of unsupervised deep learning. We propose a general learning strategy based on an encoder-decoder framework in which the latent representation is separated in an invariant term and an equivariant group action component. The key idea is that the network learns to encode and decode data to and from a group-invariant representation by additionally learning to predict the appropriate group action to align input and output pose to solve the reconstruction task. We derive the necessary conditions on the equivariant encoder, and we present a construction valid for any G, both discrete and continuous. We describe explicitly our construction for rotations, translations and permutations. We test the validity and the robustness of our approach in a variety of experiments with diverse data types employing different network architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源