论文标题
统一根的消失和自相似产品的最爱长度
Vanishing sums of roots of unity and the Favard length of self-similar product sets
论文作者
论文摘要
我们改善了Lam-Leung下限的特殊情况,其元素的数量消失了$ n $ th的统一根源。使用此结果,我们将由于债券,üaba和volberg引起的最爱长度估算扩展到新的一类合理产品Cantor集中,以$ \ Mathbb {r}^2 $。
We improve a special case of the Lam-Leung lower bound on the number of elements in a vanishing sum of $N$-th roots of unity. Using this result, we extend the Favard length estimates due to Bond, Łaba, and Volberg to a new class of rational product Cantor sets in $\mathbb{R}^2$.