论文标题

床:边缘设备的实时对象检测系统

BED: A Real-Time Object Detection System for Edge Devices

论文作者

Wang, Guanchu, Bhat, Zaid Pervaiz, Jiang, Zhimeng, Chen, Yi-Wei, Zha, Daochen, Reyes, Alfredo Costilla, Niktash, Afshin, Ulkar, Gorkem, Okman, Erman, Cai, Xuanting, Hu, Xia

论文摘要

在边缘设备上部署深神网络〜(DNNS)为现实世界任务提供了有效的解决方案。边缘设备已用于在不同域中有效地收集大量数据。 DNN是用于数据处理和分析的有效工具。但是,由于计算资源和内存有限,在边缘设备上设计DNN是具有挑战性的。为了应对这一挑战,我们演示了最大78000 DNN加速器上边缘设备的对象检测系统。它分别与摄像头和用于图像采集和检测展览的LCD显示器集成了设备的DNN推断。床是一种简洁,有效且详细的解决方案,包括模型培训,量化,合成和部署。整个存储库都是在GitHub上开源的,包括用于芯片调试的图形用户界面〜(GUI)。实验结果表明,床可以通过300 kb微小的DNN模型产生准确的检测,该模型仅需91.9 ms的推理时间和1.845 MJ的能量。实时检测可在YouTube上找到。

Deploying deep neural networks~(DNNs) on edge devices provides efficient and effective solutions for the real-world tasks. Edge devices have been used for collecting a large volume of data efficiently in different domains. DNNs have been an effective tool for data processing and analysis. However, designing DNNs on edge devices is challenging due to the limited computational resources and memory. To tackle this challenge, we demonstrate Object Detection System for Edge Devices~(BED) on the MAX78000 DNN accelerator. It integrates on-device DNN inference with a camera and an LCD display for image acquisition and detection exhibition, respectively. BED is a concise, effective and detailed solution, including model training, quantization, synthesis and deployment. The entire repository is open-sourced on Github, including a Graphical User Interface~(GUI) for on-chip debugging. Experiment results indicate that BED can produce accurate detection with a 300-KB tiny DNN model, which takes only 91.9 ms of inference time and 1.845 mJ of energy. The real-time detection is available at YouTube.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源