论文标题
在中央扩展的Jordan衍生物和环中相关地图
On centrally extended Jordan derivations and related maps in rings
论文作者
论文摘要
让$ r $为戒指,$ z(r)$是$ R的中心。$本文的目的是定义中央扩展的Jordan衍生物的概念和中央扩展的Jordan $ \ ast $ derivations,并证明涉及这些映射的一些结果。确切地说,我们证明,如果$ 2 $ torsion免费的非交易质量环$ r $ $ r $接纳了中央扩展的约旦派生(分别为中心扩展的jordan $ \ ast $ derivation)$δ:r \ f \ to $ z(r)~~(ress(x),x^{\ ast}] \ in z(r))\ text {〜for〜ally〜} x \ in R,\] 其中$'\ ast'$是$ r上的一项互动,然后$ r $是中央简单尺寸的中央简单代数中的订单,最多是其中心的4。
Let $R$ be a ring and $Z(R)$ be the center of $R.$ The aim of this paper is to define the notions of centrally extended Jordan derivations and centrally extended Jordan $\ast$-derivations, and to prove some results involving these mappings. Precisely, we prove that if a $2$-torsion free noncommutative prime ring $R$ admits a centrally extended Jordan derivation (resp. centrally extended Jordan $\ast$-derivation) $δ:R\to R$ such that \[ [δ(x),x]\in Z(R)~~(resp.~~[δ(x),x^{\ast}]\in Z(R))\text{~for~all~}x\in R, \] where $'\ast'$ is an involution on $R,$ then $R$ is an order in a central simple algebra of dimension at most 4 over its center.