论文标题
迈向统一的大流行管理体系结构:调查,挑战和未来方向
Towards a Unified Pandemic Management Architecture: Survey, Challenges and Future Directions
论文作者
论文摘要
由SARS-COV-2引起的大流行对全球的健康,经济和社会产生了前所未有的影响。新兴菌株使大流行管理越来越具有挑战性。有一种收集流行病学,临床和生理数据的冲动,以对缓解措施做出明智的决定。物联网(IoT)和Edge计算的进步通过数据收集和智能计算为大流行管理提供了解决方案。尽管现有数据驱动的架构试图自动化决策,但它们并未捕获计算模型,通信基础架构和生成数据之间的多方面交互。在本文中,我们对现有的大流行管理方法进行了调查,包括在线数据存储库和接触跟踪应用程序。然后,我们设想了一个统一的大流行管理体系结构,该体系结构利用物联网和边缘计算来自动化有关疫苗分布,动态锁定,移动性调度和大流行预测的建议。我们阐明了体系结构层之间的数据流,即云,边缘和最终设备层。此外,我们解决了可以适应具有安全保证的健康数据效用的隐私含义,威胁,法规和现有解决方案。本文以较低的限制和研究方向的局限性而结束,以增强其实用性。
The pandemic caused by SARS-CoV-2 has left an unprecedented impact on health, economy and society worldwide. Emerging strains are making pandemic management increasingly challenging. There is an urge to collect epidemiological, clinical, and physiological data to make an informed decision on mitigation measures. Advances in the Internet of Things (IoT) and edge computing provide solutions for pandemic management through data collection and intelligent computation. While existing data-driven architectures attempt to automate decision-making, they do not capture the multifaceted interaction among computational models, communication infrastructure, and the generated data. In this paper, we perform a survey of the existing approaches for pandemic management, including online data repositories and contact-tracing applications. We then envision a unified pandemic management architecture that leverages the IoT and edge computing to automate recommendations on vaccine distribution, dynamic lockdown, mobility scheduling and pandemic prediction. We elucidate the flow of data among the layers of the architecture, namely, cloud, edge and end device layers. Moreover, we address the privacy implications, threats, regulations, and existing solutions that may be adapted to optimize the utility of health data with security guarantees. The paper ends with a lowdown on the limitations of the architecture and research directions to enhance its practicality.