论文标题

深度学习和微分方程,用于建模观测周期之间个体级别潜在动态的变化

Deep learning and differential equations for modeling changes in individual-level latent dynamics between observation periods

论文作者

Köber, Göran, Kalisch, Raffael, Puhlmann, Lara, Chmitorz, Andrea, Schick, Anita, Binder, Harald

论文摘要

在建模纵向生物医学数据时,通常需要降低维度和动态模型。这可以通过人工神经网络来实现,以减少维度,以及用于单个轨迹的动态建模的微分方程。但是,到目前为止,这种方法假设在整个观察期间,个体级动力学的参数是恒定的。通过心理弹性研究的应用,我们提出了一个扩展,其中允许不同的微分方程参数用于观察子周期。尽管如此,对个体内的子周期的估计仍然是能够与相对较小的数据集拟合模型的结合。随后,我们从应用程序中的弹性动态模型中得出预测目标。这些是可解释的弹性相关结果,可以从个体的特征中预测,在基线和后续时间点测量,并选择一小部分重要预测因子。我们的方法被认为是成功地识别动态模型的个体级参数,使我们能够稳定地选择预测因子,即弹性因素。此外,我们可以确定个人的那些特征,这些特征是随访时最有希望的更新,这可能会为未来的研究设计提供信息。这强调了我们提出的深层动态建模方法的有用性,并随着观察子周期之间的参数变化而变化。

When modeling longitudinal biomedical data, often dimensionality reduction as well as dynamic modeling in the resulting latent representation is needed. This can be achieved by artificial neural networks for dimension reduction, and differential equations for dynamic modeling of individual-level trajectories. However, such approaches so far assume that parameters of individual-level dynamics are constant throughout the observation period. Motivated by an application from psychological resilience research, we propose an extension where different sets of differential equation parameters are allowed for observation sub-periods. Still, estimation for intra-individual sub-periods is coupled for being able to fit the model also with a relatively small dataset. We subsequently derive prediction targets from individual dynamic models of resilience in the application. These serve as interpretable resilience-related outcomes, to be predicted from characteristics of individuals, measured at baseline and a follow-up time point, and selecting a small set of important predictors. Our approach is seen to successfully identify individual-level parameters of dynamic models that allows us to stably select predictors, i.e., resilience factors. Furthermore, we can identify those characteristics of individuals that are the most promising for updates at follow-up, which might inform future study design. This underlines the usefulness of our proposed deep dynamic modeling approach with changes in parameters between observation sub-periods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源