论文标题

CAL填充 - 生成量热模型的力量

Calomplification -- The Power of Generative Calorimeter Models

论文作者

Bieringer, Sebastian, Butter, Anja, Diefenbacher, Sascha, Eren, Engin, Gaede, Frank, Hundhausen, Daniel, Kasieczka, Gregor, Nachman, Benjamin, Plehn, Tilman, Trabs, Mathias

论文摘要

由经典模拟的高计算成本激励,机器学习的生成模型在粒子物理和其他地方可能非常有用。当替代模型可以有效地学习潜在的分布时,它们变得特别有吸引力,从而使生成的样品的表现优于有限尺寸的训练样本。对于简单的高斯模型,已经观察到了这种ganplification。对于物理模拟,我们显示出相同的效果,特别是电磁骑热仪中的光子阵雨。

Motivated by the high computational costs of classical simulations, machine-learned generative models can be extremely useful in particle physics and elsewhere. They become especially attractive when surrogate models can efficiently learn the underlying distribution, such that a generated sample outperforms a training sample of limited size. This kind of GANplification has been observed for simple Gaussian models. We show the same effect for a physics simulation, specifically photon showers in an electromagnetic calorimeter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源