论文标题
纵向电子旋转放松时间的选择性测量$ t_1 $ t_1 $^{3+} $ ions in yag晶格:谐振旋转惯性
Selective measurement of the longitudinal electron spin relaxation time $T_1$ of Ce$^{3+}$ ions in a YAG lattice: Resonant spin inertia
论文作者
论文摘要
沿外部磁场以旋转为导向的电子受到纵向自旋松弛,特征时间$ t_1 $。相应的衰减是不激发的,因此人们不能轻易地将$ t_1 $归因于某个$ g $因子。当系统中存在几个具有不同$ G $因子的电子状态时,这将成为一个问题,例如电子和孔。我们通过光学地泵送自旋极化,然后使用射频(RF)字段选择性地将其取代来解决此问题。通过调制射频场,可以观察到自旋极化的迟缓调制,这取决于调制周期与$ t_1 $之间的关系。使用这种选择性的自旋惯性方法,我们在低温和低磁场的YAG晶体中揭示了$ T_1 $的强各向异性$ T_1 $。我们还表明,该系统中电子集合中Larmor频率的传播不是静态的,而是由于内部磁场在时间表上的波动而产生的,比$ t_1 $短得多。
Electron spin oriented along an external magnetic field is subject to longitudinal spin relaxation with characteristic time $T_1$. The corresponding decay is nonoscillating, so one cannot readily ascribe $T_1$ to a certain $g$ factor. This becomes a problem when several electronic states with different $g$ factors are present in the system, e.g. electrons and holes. We solve this problem by optically pumping spin polarization and then selectively depolarizing it using a radio frequency (rf) field. By modulating the rf field one can observe the retarded modulation of spin polarization which depends on the relation between the modulation period and $T_1$. Using this selective spin inertia method, we unveil the strong anisotropy of $T_1$ for rare-earth Ce$^{3+}$ ions in a YAG crystal at low temperatures and low magnetic fields. We also show that the spread of Larmor frequencies within the electron ensemble in this system is not static, but results from the fluctuations of internal magnetic fields on a timescale much shorter than $T_1$.