论文标题
关于神经网络表示中块结构现象的起源
On the Origins of the Block Structure Phenomenon in Neural Network Representations
论文作者
论文摘要
最近的工作发现了大容量神经网络中的惊人现象:它们包含具有高度相似表示的连续隐藏层的块。该块结构具有两个看似矛盾的特性:一方面,其组成层具有高度相似的主要首席组件(PC),但另一方面,它们的表示形式和它们的常见第一PC在不同的随机种子中具有很高的不同。我们的工作旨在通过研究与数据和培训方法有关的块结构的起源来调和这些差异属性。通过分析主要PC的属性,我们发现块结构源于主要数据点 - 一小部分示例,它们共享相似的图像统计数据(例如背景颜色)。但是,一组主要的数据点以及确切的共享图像统计量可能会因随机种子而变化。因此,块结构反映了有意义的数据集统计信息,但在每个模型中同时却是独特的。通过研究隐藏层激活并创建合成数据点,我们证明了这些简单的图像统计数据主导了块结构内层的代表性几何形状。我们探讨了现象如何通过训练来演变,发现块结构在训练早期形成,但是基础表示和相应的主要数据点继续发生了很大变化。最后,我们研究了区块结构和不同训练机制之间的相互作用,引入了靶向干预措施,以消除块结构,并检查训练和摇动正则化的影响。
Recent work has uncovered a striking phenomenon in large-capacity neural networks: they contain blocks of contiguous hidden layers with highly similar representations. This block structure has two seemingly contradictory properties: on the one hand, its constituent layers exhibit highly similar dominant first principal components (PCs), but on the other hand, their representations, and their common first PC, are highly dissimilar across different random seeds. Our work seeks to reconcile these discrepant properties by investigating the origin of the block structure in relation to the data and training methods. By analyzing properties of the dominant PCs, we find that the block structure arises from dominant datapoints - a small group of examples that share similar image statistics (e.g. background color). However, the set of dominant datapoints, and the precise shared image statistic, can vary across random seeds. Thus, the block structure reflects meaningful dataset statistics, but is simultaneously unique to each model. Through studying hidden layer activations and creating synthetic datapoints, we demonstrate that these simple image statistics dominate the representational geometry of the layers inside the block structure. We explore how the phenomenon evolves through training, finding that the block structure takes shape early in training, but the underlying representations and the corresponding dominant datapoints continue to change substantially. Finally, we study the interplay between the block structure and different training mechanisms, introducing a targeted intervention to eliminate the block structure, as well as examining the effects of pretraining and Shake-Shake regularization.