论文标题

$ 3 $均匀松散的饱和$ 3 $ -Crecle

Saturation for the $3$-uniform loose $3$-cycle

论文作者

English, Sean, Kostochka, Alexandr, Zirlin, Dara

论文摘要

令$ f $和$ h $为$ k $均匀的超图。我们说$ h $是$ f $ - 饱和的,如果$ h $不包含子图的同构为$ f $,但是$ h+e $对于任何e(h)$中的任何hyperedey $ e \ not \ b。 $ f $的饱和数,表示为$ \ mathrm {sat} _k(n,f)$,是$ f $饱和$ k $ k $ - 均匀的hypergraph $ h $ in $ n $ dertices上的最小边数。令$ c_3^{(3)} $表示$ 3 $ - 均匀的循环$ 3 $边缘。在这项工作中,我们证明了 \ [ \ left(\ frac {4} 3+o(1)\右)n \ leq \ mathrm {sat} _3(n,c_3^{(3)})\ leq \ leq \ frac {3} 2n+o(1)。 \] 这是固定短高图周期饱和数的第一个非平凡结果。

Let $F$ and $H$ be $k$-uniform hypergraphs. We say $H$ is $F$-saturated if $H$ does not contain a subgraph isomorphic to $F$, but $H+e$ does for any hyperedge $e\not\in E(H)$. The saturation number of $F$, denoted $\mathrm{sat}_k(n,F)$, is the minimum number of edges in a $F$-saturated $k$-uniform hypergraph $H$ on $n$ vertices. Let $C_3^{(3)}$ denote the $3$-uniform loose cycle on $3$ edges. In this work, we prove that \[ \left(\frac{4}3+o(1)\right)n\leq \mathrm{sat}_3(n,C_3^{(3)})\leq \frac{3}2n+O(1). \] This is the first non-trivial result on the saturation number for a fixed short hypergraph cycle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源