论文标题

多光子量子Van Cittert-zernike定理

Multiphoton Quantum van Cittert-Zernike Theorem

论文作者

Miller, Ashe, You, Chenglong, León-Montiel, Roberto de J., Magaña-Loaiza, Omar S.

论文摘要

量子状态工程的最新进展使得量子光子系统的制备包括多个相互作用的颗粒。有趣的是,多光子量子系统可以托管许多复杂形式的干扰和散射过程,这些过程对于在经典系统上进行棘手的操作至关重要。不幸的是,在传播后,多光子系统的量子相干性能降低,导致不想要的量子到经典的跃迁。此外,对多光子量子系统的操纵需要在几个光子级上进行非线性相互作用。在这里,我们介绍了量子Van Cittert-zernike定理,以描述传播多光子系统的散射和干扰效应。该基本定理表明,在没有光 - 物质相互作用的情况下,可以在传播后修改量子统计波动,从而定义了各种光源的性质。我们形式主义的一般性揭示了多光系统的演变可能导致令人惊讶的古典量转变的条件。具体而言,我们表明,有条件测量的实施可以使多光系统的全光制制备具有低于射击量限制的量子统计数据。值得注意的是,这种效果以前尚未讨论过,也无法通过光学连贯性的经典理论来解释。因此,我们的工作在既定的量子连贯性领域都打开了新的范式。

Recent progress on quantum state engineering has enabled the preparation of quantum photonic systems comprising multiple interacting particles. Interestingly, multiphoton quantum systems can host many complex forms of interference and scattering processes that are essential to perform operations that are intractable on classical systems. Unfortunately, the quantum coherence properties of multiphoton systems degrade upon propagation leading to undesired quantum-to-classical transitions. Furthermore, the manipulation of multiphoton quantum systems requires of nonlinear interactions at the few-photon level. Here, we introduce the quantum van Cittert-Zernike theorem to describe the scattering and interference effects of propagating multiphoton systems. This fundamental theorem demonstrates that the quantum statistical fluctuations, which define the nature of diverse light sources, can be modified upon propagation in the absence of light-matter interactions. The generality of our formalism unveils the conditions under which the evolution of multiphoton systems can lead to surprising classical-to-quantum transitions. Specifically, we show that the implementation of conditional measurements may enable the all-optical preparation of multiphoton systems with attenuated quantum statistics below the shot-noise limit. Remarkably, this effect had not been discussed before and cannot be explained through the classical theory of optical coherence. As such, our work opens new paradigms within the established field of quantum coherence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源