论文标题

合成控制的匪徒

Synthetically Controlled Bandits

论文作者

Farias, Vivek, Moallemi, Ciamac, Peng, Tianyi, Zheng, Andrew

论文摘要

本文提出了一种在设置中进行实验设计的新动态方法,在这种情况下,由于干扰或其他问题,实验单元很粗糙。在线平台上进行的“区域切片”实验就是这种设置的一个示例。实验的成本或遗憾在这里是一个自然的问题。我们的新设计被称为合成控制的汤普森采样(SCT),最大程度地减少了与实验相关的遗憾,这实际上没有对推论能力的有意义的损失。我们提供理论保证,表征了我们方法近乎最理想的遗憾,以及相应的治疗效果估计器所达到的错误率。关于综合和现实世界数据的实验突出了我们方法相对于固定和“折返”设计的优点。

This paper presents a new dynamic approach to experiment design in settings where, due to interference or other concerns, experimental units are coarse. `Region-split' experiments on online platforms are one example of such a setting. The cost, or regret, of experimentation is a natural concern here. Our new design, dubbed Synthetically Controlled Thompson Sampling (SCTS), minimizes the regret associated with experimentation at no practically meaningful loss to inferential ability. We provide theoretical guarantees characterizing the near-optimal regret of our approach, and the error rates achieved by the corresponding treatment effect estimator. Experiments on synthetic and real world data highlight the merits of our approach relative to both fixed and `switchback' designs common to such experimental settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源