论文标题
神经脆弱性的分析:界定排名一的扰动矩阵的规范
Analysis of Neural Fragility: Bounding the Norm of a Rank-One Perturbation Matrix
论文作者
论文摘要
全世界有超过1500万癫痫患者对药物没有反应,需要手术治疗。成功的手术治疗需要完全去除或断开癫痫发作区(EZ),但没有EZ的前瞻性生物标志物,手术成功率在30%-70%之间变化。神经脆性是最近提出的旨在定位EZ的模型。神经脆性计算为估计线性动力学系统的结构化级别驱动力的L2规范。但是,尚未探索对其数值属性的分析。我们表明,从数据中对线性动力学系统进行了良好的估计器,神经脆性是一个明确定义的模型。具体而言,我们为神经脆性提供了界限,这是基础线性系统和噪声的函数。
Over 15 million epilepsy patients worldwide do not respond to drugs and require surgical treatment. Successful surgical treatment requires complete removal, or disconnection of the epileptogenic zone (EZ), but without a prospective biomarker of the EZ, surgical success rates vary between 30%-70%. Neural fragility is a model recently proposed to localize the EZ. Neural fragility is computed as the l2 norm of a structured rank-one perturbation of an estimated linear dynamical system. However, an analysis of its numerical properties have not been explored. We show that neural fragility is a well-defined model given a good estimator of the linear dynamical system from data. Specifically, we provide bounds on neural fragility as a function of the underlying linear system and noise.