论文标题

线性和深模型的连续概括序数回归

Continuously Generalized Ordinal Regression for Linear and Deep Models

论文作者

Lu, Fred, Ferraro, Francis, Raff, Edward

论文摘要

序数回归是一项分类任务,其中类具有顺序和预测错误增加了预测类与真实类别的越远。建模序数数据的标准方法涉及拟合平行分离优化一定损失函数的超平面。该假设通过归纳偏差提供了样本有效学习,但是在现实数据集中通常过于限制,在这些数据集中,特征在不同类别的效果可能会有所不同。允许特定于类的超平面斜率创造了广义的逻辑序列回归,从而以样品效率成本提高了模型的灵活性。我们探索了广义模型的扩展到全阈值的逻辑损失,并提出了一种正规化方法,该方法在这两个极端之间进行了插值。我们的方法(我们称为连续概括的序物逻辑)在一组彻底的序数回归基准数据集上大大优于标准序物逻辑模型。我们将这种方法进一步扩展到深度学习,并表明与以前的模型相比,在一系列数据集和模式中,它实现了竞争性或较低的预测错误。此外,深度学习序数回归的两个主要替代模型被证明是我们框架的特殊情况。

Ordinal regression is a classification task where classes have an order and prediction error increases the further the predicted class is from the true class. The standard approach for modeling ordinal data involves fitting parallel separating hyperplanes that optimize a certain loss function. This assumption offers sample efficient learning via inductive bias, but is often too restrictive in real-world datasets where features may have varying effects across different categories. Allowing class-specific hyperplane slopes creates generalized logistic ordinal regression, increasing the flexibility of the model at a cost to sample efficiency. We explore an extension of the generalized model to the all-thresholds logistic loss and propose a regularization approach that interpolates between these two extremes. Our method, which we term continuously generalized ordinal logistic, significantly outperforms the standard ordinal logistic model over a thorough set of ordinal regression benchmark datasets. We further extend this method to deep learning and show that it achieves competitive or lower prediction error compared to previous models over a range of datasets and modalities. Furthermore, two primary alternative models for deep learning ordinal regression are shown to be special cases of our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源