论文标题

非平衡相变的最小动作方法

Minimum Action Method for Nonequilibrium Phase Transitions

论文作者

Zakine, Ruben, Vanden-Eijnden, Eric

论文摘要

在活性物质,流体动力学,生物学,气候科学和其他具有不可逆动力学的系统中观察到的一阶非平衡相变很具有挑战性,因为不能从简单的自由能最小化原理中推断出来。相反,这些过渡的机制取决于系统的动力学,这要求我们在轨迹空间而不是相位空间中分析它们。在这里,我们考虑了这些转变的路径可以将其表征为动作的最小化器,其最小值可用于Arrhenius Law的非平衡概括来计算系统的相图。我们还开发了有效的数值工具,以最大程度地减少此动作。这些工具足够通用,可以运输到许多感兴趣的情况下,特别是当微观系统中存在的波动是非高斯时,其动态不受标准的langevin方程的影响。作为一个例证,分析了两个空间扩展的非平衡系统中的一阶相变:一种具有化学势的修饰的金茨堡 - 兰道方程,其化学势是非梯度的,并且是基于Schlögl模型的反应扩散网络。两个系统的相图都是根据其控制参数的函数计算的,并且确定了包括其临界核在内的过渡的路径。这些结果清楚地表明了过渡的非平衡性质,前进路径不同。

First-order nonequilibrium phase transitions observed in active matter, fluid dynamics, biology, climate science, and other systems with irreversible dynamics are challenging to analyze because they cannot be inferred from a simple free energy minimization principle. Rather the mechanism of these transitions depends crucially on the system's dynamics, which requires us to analyze them in trajectory space rather than in phase space. Here we consider situations where the path of these transitions can be characterized as the minimizer of an action, whose minimum value can be used in a nonequilibrium generalization of the Arrhenius law to calculate the system's phase diagram. We also develop efficient numerical tools for the minimization of this action. These tools are general enough to be transportable to many situations of interest, in particular when the fluctuations present in the microscopic system are non-Gaussian and its dynamics is not governed by the standard Langevin equation. As an illustration, first-order phase transitions in two spatially-extended nonequilibrium systems are analyzed: a modified Ginzburg-Landau equation with a chemical potential which is non-gradient, and a reaction-diffusion network based on the Schlögl model. The phase diagrams of both systems are calculated as a function of their control parameters, and the paths of the transitions, including their critical nuclei, are identified. These results clearly demonstrate the nonequilibrium nature of the transitions, with differing forward and backward paths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源