论文标题
exel-pardo of自相似于$ k $ -graphs的代数
Exel-Pardo algebras of self-similar $k$-graphs
论文作者
论文摘要
我们介绍Exel-pardo $*$ - 代数$ \ mathrm {ep} _r(g,λ)$与自相似$ k $ -graph $(g,λ,φ)$关联的$。我们证明了$ \ mathbb {z}^k $ graded and cuntz-krieger唯一定理,用于此代数并研究其理想的结构。特别是,我们将分级的唯一性定理修改为自相似1图,然后将其应用于呈现$ \ m artrm {ep} _r(g,λ)$作为Steinberg代数,并研究理想的结构。
We introduce the Exel-Pardo $*$-algebra $\mathrm{EP}_R(G,Λ)$ associated to a self-similar $k$-graph $(G,Λ,φ)$. We prove the $\mathbb{Z}^k$-graded and Cuntz-Krieger uniqueness theorems for such algebras and investigate their ideal structure. In particular, we modify the graded uniqueness theorem for self-similar 1-graphs, and then apply it to present $\mathrm{EP}_R(G,Λ)$ as a Steinberg algebra and to study the ideal structure.