论文标题

拓扑 - 伟大的 - 触脚 - - 距离定理,用于$ g/k $的均质矢量束的部分

A topological Paley-Wiener-Schwartz Theorem for sections of homogeneous vector bundles on $G/K$

论文作者

Olbrich, Martin, Palmirotta, Guendalina

论文摘要

我们研究了非紧凑型型$ x = g/k $的对称空间上的复杂均匀矢量束的紧凑型分布部分的傅立叶变换。我们证明了它们范围的特征。实际上,从Delorme的Paley-Wiener定理中,我们在真正的还原性Harish-Chandra级别上的紧凑型光滑功能,我们推论拓扑典型的Paley-Wiener和Paley-Wiener-Schwartz定理,以进行部分。

We study the Fourier transform for compactly supported distributional sections of complex homogeneous vector bundles on symmetric spaces of non-compact type $X = G/K$. We prove a characterisation of their range. In fact, from Delorme's Paley-Wiener theorem for compactly supported smooth functions on a real reductive group of Harish-Chandra class, we deduce topological Paley-Wiener and Paley-Wiener-Schwartz theorems for sections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源