论文标题
拓扑 - 伟大的 - 触脚 - - 距离定理,用于$ g/k $的均质矢量束的部分
A topological Paley-Wiener-Schwartz Theorem for sections of homogeneous vector bundles on $G/K$
论文作者
论文摘要
我们研究了非紧凑型型$ x = g/k $的对称空间上的复杂均匀矢量束的紧凑型分布部分的傅立叶变换。我们证明了它们范围的特征。实际上,从Delorme的Paley-Wiener定理中,我们在真正的还原性Harish-Chandra级别上的紧凑型光滑功能,我们推论拓扑典型的Paley-Wiener和Paley-Wiener-Schwartz定理,以进行部分。
We study the Fourier transform for compactly supported distributional sections of complex homogeneous vector bundles on symmetric spaces of non-compact type $X = G/K$. We prove a characterisation of their range. In fact, from Delorme's Paley-Wiener theorem for compactly supported smooth functions on a real reductive group of Harish-Chandra class, we deduce topological Paley-Wiener and Paley-Wiener-Schwartz theorems for sections.