论文标题

组合矩阵的代数方面

Algebraic Aspects of combined matrices

论文作者

Acosta-Humánez, Primitivo B., Leonardo, Randy, Santana, Máximo

论文摘要

在这项工作中,我们提出了有关组合矩阵$ \ MATHCAL {C}(a)$的代数结果,其中$ a $的条目属于数字字段$ k $,而$ a $是一个非符号矩阵。换句话说,$ a $是属于$ k $的通用线性群的$ n \ times n $矩阵,由$ \ mathrm {gl} _n(k)$表示。我们还分析了矩阵$ a $属于$ \ mathrm {gl} _n(k)$的代数子组,例如单模型组,其中$ a^2 $是$ n \ times n $矩阵,属于特殊的lineart,由$ \ mathrm中的$ \ m ixrian组成的组成部分, 其他的。特别是,我们对对称和非对称矩阵的情况进行了$ n = 2 $和$ n = 3 $的案例,提供了$ \ Mathcal {C}(a)$的显式对角度化,其中包括具有特征性的多项式及其特征性和特征性和特征性的。

In this work, we present algebraic results concerning the combined matrices $\mathcal{C}(A)$, where the entries of $A$ belong to a number field $K$ and $A$ is a non-singular matrix. In other words, $A$ is a $n\times n$ matrix belonging to the General Linear Group over $K$, denoted by $\mathrm{GL}_n(K)$. We also analyze the case in which matrix $A$ belongs to algebraic subgroups of $\mathrm{GL}_n(K)$, such as the unimodular group, where $A^2$ is a $n\times n$ matrix belonging to the Special Linear Group, denoted by $\mathrm{SL}_n(K)$, triangular groups, diagonal groups, among others. In particular, we thouroughly examine the cases $n=2$ and $n=3$ for symmetric and non-symmetric matrices, providing explicit diagonalization of $\mathcal{C}(A)$, which includes characteristic polynomials with their eigenvalues and eigenfactors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源