论文标题

一种基于ADMM的分布式优化方法,用于解决安全受限的AC最佳功率流

An ADMM-based Distributed Optimization Method for Solving Security-Constrained AC Optimal Power Flow

论文作者

Gholami, Amin, Sun, Kaizhao, Zhang, Shixuan, Sun, Xu Andy

论文摘要

在本文中,我们研究了解决安全性的当前最佳功率流(SC-ACOPF)问题的有效且可靠的计算方法,这是一个两阶段的非线性优化问题,具有分离的约束,这对于电力电网的运行至关重要。 SC-ACOPF中的第一阶段问题确定了在正常情况下功率网格的操作,而第二阶段问题对丢失发电机,传输线和变压器的各种意外情况做出了反应。这两个阶段是通过析取约束耦合的,该阶段对生成器的主动和反应性输出变化进行了建模,从而响应了偶然性后对系统范围的活动功率不平衡和电压偏差做出响应。现实世界中的SC-ACOPF问题可能涉及超过30K巴士和22k意外事件的电网,并且需要在10-45分钟内解决,以获取具有高可行性和合理发电成本的基本情况解决方案。我们开发了一个综合的算法框架来解决SC-ACOPF,以满足速度,解决方案质量和计算鲁棒性的挑战。特别是,我们开发了一种平滑技术,以将析取约束近似为平滑结构,该结构可以通过内点求解器来处理。我们设计了分布式优化算法以有效生成第一阶段解决方案;我们提出了一个筛选程序以优先考虑意外情况;最后,我们开发了一个可靠且并行的架构,该体系结构集成了所有算法组件。对行业规模系统的广泛测试证明了拟议算法的出色性能。

In this paper, we study efficient and robust computational methods for solving the security-constrained alternating current optimal power flow (SC-ACOPF) problem, a two-stage nonlinear optimization problem with disjunctive constraints, that is central to the operation of electric power grids. The first-stage problem in SC-ACOPF determines the operation of the power grid in normal condition, while the second-stage problem responds to various contingencies of losing generators, transmission lines, and transformers. The two stages are coupled through disjunctive constraints, which model generators' active and reactive power output changes responding to system-wide active power imbalance and voltage deviations after contingencies. Real-world SC-ACOPF problems may involve power grids with more than 30k buses and 22k contingencies and need to be solved within 10-45 minutes to get a base case solution with high feasibility and reasonably good generation cost. We develop a comprehensive algorithmic framework to solve SC-ACOPF that meets the challenge of speed, solution quality, and computation robustness. In particular, we develop a smoothing technique to approximate disjunctive constraints into a smooth structure which can be handled by interior-point solvers; we design a distributed optimization algorithm to efficiently generate first-stage solutions; we propose a screening procedure to prioritize contingencies; and finally, we develop a reliable and parallel architecture that integrates all algorithmic components. Extensive tests on industry-scale systems demonstrate the superior performance of the proposed algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源