论文标题

超高能中微子的量子自旋燃烧记忆

Quantum spin-flavour memory of ultrahigh-energy neutrino

论文作者

Kurashvili, P., Chotorlishvili, L., Kouzakov, K. A., Studenikin, A. I.

论文摘要

与在量子系统上进行的测量相关的不确定性有两种类型:统计系统以及与不合同的可观察物和不兼容测量有关的测量。后者表示量子系统的固有性质,并且是本研究的范围。我们探索与星际超高能源中微子有关的不确定性,并引入了一种新颖的概念:量子自旋 - 燃式记忆。晚期不确定性度量是熵措施,量子记忆的影响降低了不确定性。所讨论的问题对应于一个真实的物理事件:一些遥远的来源发出的高能狄拉克中微子,并向地球传播。中微子具有有限的磁矩,并与确定性和随机星际磁场相互作用。为了描述嘈杂环境的效果,我们利用了中微子密度矩阵的Lindblad Master方程。量子自旋流动记忆我们根据广义的克劳斯的权衡关系进行量化。当缺乏量子记忆时,这种权衡关系将转换为平等。我们发现,虽然大多数量子相关性的度量都表明它们无关紧要,但量子自旋 - 富含式不符合的和量子是量子自旋 - 富含式 - 富含气式内存的量词。

There are two types of uncertainties related to the measurements done on a quantum system: statistical and those related to non-commuting observables and incompatible measurements. The latter indicates the quantum system's inherent nature and is in the scope of the present study. We explore uncertainties related to the interstellar ultrahigh-energy neutrino and introduce a novel concept: quantum spin-flavour memory. Advanced uncertainty measures are entropic measures, and the effect of the quantum memory reduces the uncertainty. The problem in question corresponds to a real physical event: high-energy Dirac neutrinos emitted by some distant source and propagating towards the earth. The neutrino has a finite magnetic moment and interacts with both deterministic and stochastic interstellar magnetic fields. To describe the effect of a noisy environment, we exploit the Lindblad master equation for the neutrino density matrix. Quantum spin-flavour memory we quantify in terms of the generalized Kraus's trade-off relation. This trade-off relation converts to the equality when quantum memory is absent. We discovered that while most measures of quantum correlations show their irrelevance, the quantum spin-flavour discord is the quantifier of the quantum spin-flavour memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源