论文标题
逆设计的高敏检测的逆线索学
Inverse-designed metaphotonics for hypersensitive detection
论文作者
论文摘要
控制纳米级宽带电磁能的流动仍然是光电子中的关键挑战。表面等离子体极化子(或等离子)提供了光的亚波长度定位,但受到明显损失的影响。相反,在可见的捕获类似金属结构的捕获光子中,电介质缺乏足够鲁棒的响应。克服这些局限性似乎是难以捉摸的,因为它意味着要在物质的量子机械形式中设计出绕过因果关系的途径。在这里,我们证明,如果我们采用基于适当变形的反射印象结构采用新颖的方法,解决这个问题是可能的。这些反射器中设计的复杂几何形状模拟了非分散指数响应,可以根据任意形式因素进行反设计。我们讨论了基本组件的实现,例如具有超高折射率$ n = 100 $的不同概况的谐振器。这些结构支持以在空气中完全定位的连续体(BIC)形式的光定位,在一个平台中,所有折射率区域都可以物理访问。我们讨论了我们的传感应用方法,设计一类传感器,分析物直接接触超高折射率的区域。利用此功能,我们报告的差异灵敏度最高$ 350 $ 〜nm/riU的结构约为一微米。这些表演比最接近的竞争对手要好两倍。反相反设计的反射率高音学提供了一种灵活的技术,可用于控制宽带光,从而支持光电子的集成,并在电路中具有大型带宽,并具有微型的足迹。
Controlling the flow of broadband electromagnetic energy at the nanoscale remains a critical challenge in optoelectronics. Surface plasmon polaritons (or plasmons) provide subwavelength localization of light, but are affected by significant losses. On the contrary, dielectrics lack a sufficiently robust response in the visible to trap photons similar to metallic structures. Overcoming these limitations appears elusive, as it implies devising a path to circumvent causality in the quantum-mechanical form of matter. Here we demonstrate that addressing this problem is possible if we employ a novel approach based on suitably deformed reflective metaphotonic structures. The complex geometrical shape engineered in these reflectors emulates nondispersive index responses, which can be inverse-designed following arbitrary form factors. We discuss the realization of essential components such as resonators with an ultra-high refractive index of $n=100$ in diverse profiles. These structures support localization of light in the form of bound states in the continuum (BIC), fully localized in air, in a platform in which all refractive index regions are physically accessible. We discuss our approach to sensing applications, designing a class of sensors where the analyte directly contacts areas of ultra-high refractive index. Leveraging this feature, we report differential sensitivities up to $350$~nm/RIU in structures with footprints of approximately one micron. These performances are two times better than the closest competitor with a similar form factor. Inversely designed reflective metaphotonics offers a flexible technology for controlling broadband light, supporting optoelectronics' integration with large bandwidths in circuitry with miniaturized footprints.