论文标题
Frisch - parisi形式主义,用于Schrödinger方程的波动
The Frisch--Parisi formalism for fluctuations of the Schrödinger equation
论文作者
论文摘要
当初始基准趋向于Dirac Comb时,我们考虑$ \ Mathbb {r} $中Schrödinger方程$ u $的解决方案。令$ h _ {\ text {p},δ}(t)$为$ \ int \ lvert x \ rvert x \ rvert^{2Δ} \ lvert u(x,x,x,x,t)\ rvert^2 \,dx $,dx $的波动。我们证明Frisch-Parisi形式主义对$H_δ(T)= \ int _ {[0,T]} H _ {\ Text {p},δ}(2S)\,ds $,这在道德上是Riemann的无分量曲线曲线$ r r $。我们的动机是了解与$ r $有关的多边形丝的涡旋丝方方程的演变。
We consider the solution of the Schrödinger equation $u$ in $\mathbb{R}$ when the initial datum tends to the Dirac comb. Let $h_{\text{p}, δ}(t)$ be the fluctuations in time of $\int\lvert x\rvert^{2δ}\lvert u(x,t)\rvert^2\,dx$, for $0 < δ< 1$, after removing a smooth background. We prove that the Frisch--Parisi formalism holds for $H_δ(t) = \int_{[0,t]}h_{\text{p}, δ}(2s)\,ds$, which is morally a simplification of the Riemann's non-differentiable curve $R$. Our motivation is to understand the evolution of the vortex filament equation of polygonal filaments, which are related to $R$.