论文标题

在随机异质材料中脆性裂缝的无网状植物动力学模型

A Meshfree Peridynamic Model for Brittle Fracture in Randomly Heterogeneous Materials

论文作者

Fan, Yiming, You, Huaiqian, Tian, Xiaochuan, Yang, Xiu, Li, Xingjie, Prakash, Naveen, Yu, Yue

论文摘要

在这项工作中,我们旨在开发一个统一的数学框架和可靠的计算方法,以建模具有材料微观结构可变性的异质材料中脆性断裂,并为诸如裂缝韧性之类的利益数量提供统计指标。为了描述材料反应并自然描述裂缝的成核和生长,我们考虑了perideNeganic模型。特别是,开发了基于随机状态的动力学模型,其中微机械参数是通过有限维的随机矢量建模的,或者是截断Karhunen-Loève分解或原理分析(PCA)的随机变量的组合。为了解决这个随机的脑动力学问题,采用概率搭配方法(PCM)来采样代表微力参数的随机场。对于每个样本,通过基于优化的网格正交规则将确定性的动力学问题离散。我们对拟议方案进行了严格的分析,并证明了其对许多基准问题的收敛性,表明它在空间上维持渐近兼容性,并在随机空间中达到代数或亚指数收敛速率,随着搭配点的数量的增长。最后,为了验证这种方法在现实世界断裂问题上的适用性,我们考虑了玻璃陶瓷材料中结晶韧性的问题,其中微结构尺度上的材料既包含无定形玻璃和结晶相。所提出的随机perideganic求解器用于捕获具有不同晶体体积分数的玻璃陶瓷的裂纹起始和生长,并计算了平均断裂韧性。断裂韧性的数值估计值在实验测量中表现出良好的一致性。

In this work we aim to develop a unified mathematical framework and a reliable computational approach to model the brittle fracture in heterogeneous materials with variability in material microstructures, and to provide statistic metrics for quantities of interest, such as the fracture toughness. To depict the material responses and naturally describe the nucleation and growth of fractures, we consider the peridynamics model. In particular, a stochastic state-based peridynamic model is developed, where the micromechanical parameters are modeled by a finite-dimensional random vector, or a combination of random variables truncating the Karhunen-Loève decomposition or the principle component analysis (PCA). To solve this stochastic peridynamic problem, probabilistic collocation method (PCM) is employed to sample the random field representing the micromechanical parameters. For each sample, the deterministic peridynamic problem is discretized with an optimization-based meshfree quadrature rule. We present rigorous analysis for the proposed scheme and demonstrate its convergence for a number of benchmark problems, showing that it sustains the asymptotic compatibility spatially and achieves an algebraic or sub-exponential convergence rate in the random space as the number of collocation points grows. Finally, to validate the applicability of this approach on real-world fracture problems, we consider the problem of crystallization toughening in glass-ceramic materials, in which the material at the microstructural scale contains both amorphous glass and crystalline phases. The proposed stochastic peridynamic solver is employed to capture the crack initiation and growth for glass-ceramics with different crystal volume fractions, and the averaged fracture toughness are calculated. The numerical estimates of fracture toughness show good consistency with experimental measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源