论文标题

多项式$α$ - 吸收器

Polynomial $α$-attractors

论文作者

Kallosh, Renata, Linde, Andrei

论文摘要

通货膨胀$α$ - 吸引者模型可以通过双曲线几何形状自然实现。他们对可观察到的预测有稳定的预测,例如$ n_s = 1- {2/ n_e} $,假设在原始几何变量及其衍生物方面的潜力在荷磁盘的边界上不是单数,或者不是单数。在这些型号中,规范归一化的充气场$φ$中的潜力具有高原,该平台在大$φ$下呈指数级的快速接近。我们称它们为指数$α$ aftractors。我们提出了密切相关的模型类别,其中电势不是单数,但其衍生物在边界处是单数。产生的充气电位也是平稳的电位,但它以多项式接近高原。我们称它们为多项式$α$ aftractors。对这两个吸引子家族的预测完全涵盖了普朗克/二头肌/凯克数据的最佳位置。指数级在左侧,多项式在右侧。

Inflationary $α$-attractor models can be naturally implemented in supergravity with hyperbolic geometry. They have stable predictions for observables, such as $n_s=1-{2/ N_e} $, assuming that the potential in terms of the original geometric variables, as well as its derivatives, are not singular at the boundary of the hyperbolic disk, or half-plane. In these models, the potential in the canonically normalized inflaton field $φ$ has a plateau, which is approached exponentially fast at large $φ$. We call them exponential $α$-attractors. We present a closely related class of models, where the potential is not singular, but its derivative is singular at the boundary. The resulting inflaton potential is also a plateau potential, but it approaches the plateau polynomially. We call them polynomial $α$-attractors. Predictions of these two families of attractors completely cover the sweet spot of the Planck/BICEP/Keck data. The exponential ones are on the left, the polynomial are on the right.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源