论文标题
在车辆的时代表征差异私人技术
Characterizing Differentially-Private Techniques in the Era of Internet-of-Vehicles
论文作者
论文摘要
高级人车相互作用的最新发展取决于概念车互联网(IOV),以实现大规模的通信和实践中数据的同步。 IOV的概念与分布式系统高度相似,在该系统中,每辆车都被视为节点,并且所有节点都与集中式服务器分组。以这种方式,由于所有车辆都收集,处理和共享个人统计数据(例如多模式,驾驶状态等),因此数据隐私的关注点非常重要。因此,重要的是要了解现代保护隐私技术如何适合IOV。 我们介绍了最全面的研究,以表征IOV迄今为止IOV的现代隐私技术。我们专注于差异隐私(DP),这是一组代表性的,保证了隐私处理的机制,并在敏感数据上共享。我们研究的目的是在服务质量方面揭开部署DP技术的权衡。我们首先表征了由高级DP方法启用的代表性隐私处理机制。然后,我们对新兴的车载,深神经网络驱动的应用进行详细研究,并研究DP的优势和弊端,用于各种类型的数据流。我们的研究获得了11个关键发现,我们从详细的特征中重点介绍了5个最重要的观察结果。我们得出的结论是,通过启用较低间接费用的服务质量的隐私IOV,有大量的未来研究挑战和机会。
Recent developments of advanced Human-Vehicle Interactions rely on the concept Internet-of-Vehicles (IoV), to achieve large-scale communications and synchronizations of data in practice. The concept of IoV is highly similar to a distributed system, where each vehicle is considered as a node and all nodes are grouped with a centralized server. In this manner, the concerns of data privacy are significant since all vehicles collect, process and share personal statistics (e.g. multi-modal, driving statuses and etc.). Therefore, it's important to understand how modern privacy-preserving techniques suit for IoV. We present the most comprehensive study to characterize modern privacy-preserving techniques for IoV to date. We focus on Differential Privacy (DP), a representative set of mathematically-guaranteed mechanisms for both privacy-preserving processing and sharing on sensitive data. The purpose of our study is to demystify the tradeoffs of deploying DP techniques, in terms of service quality. We first characterize representative privacy-preserving processing mechanisms, enabled by advanced DP approaches. Then we perform a detailed study of an emerging in-vehicle, Deep-Neural-Network-driven application, and study the upsides and downsides of DP for diverse types of data streams. Our study obtains 11 key findings and we highlight FIVE most significant observations from our detailed characterizations. We conclude that there are a large volume of challenges and opportunities for future studies, by enabling privacy-preserving IoV with low overheads for service quality.