论文标题
蒙奇解决方案的渐近行为 - 无穷大的收敛速率缓慢的ampère方程
Asymptotic behavior of solutions to the Monge--Ampère equations with slow convergence rate at infinity
论文作者
论文摘要
我们考虑了解决蒙奇方程的渐近行为,即无穷大的收敛速率缓慢,并在bao-li-zhang [calc]下实现了以前的结果。 var pde。 52(2015)。 pp。39-63]。与已知结果不同,我们在无穷大的情况下获得了Hessian和/或溶液梯度的极限,并取决于收敛速率。基本思想是使用修订后的集合方法,球形谐波扩展和迭代方法。
We consider the asymptotic behavior of solutions to the Monge--Ampère equations with slow convergence rate at infinity and fulfill previous results under faster convergence rate by Bao--Li--Zhang [Calc. Var PDE. 52(2015). pp. 39-63]. Different from known results, we obtain the limit of Hessian and/or gradient of solution at infinity relying on the convergence rate. The basic idea is to use a revised level set method, the spherical harmonic expansion and the iteration method.