论文标题
关于奇点的界限和Kollár组件的最小日志差异
On boundedness of singularities and minimal log discrepancies of Kollár components
论文作者
论文摘要
K稳定性的最新研究表明,KLT奇异性的局部体积远离零的界限应限制为特殊变性。我们表明,这在第三维中是正确的,或者当Kollár组件的最小日志差异从上方界定时。我们猜想Kollár组件的最小对数差异总是从上方界定的,并在局部体积远离零界限时将其验证为第三。我们还回答了Han,Liu和Qi的问题,涉及日志规范阈值与本地量之间的关系。
Recent study in K-stability suggests that klt singularities whose local volumes are bounded away from zero should be bounded up to special degeneration. We show that this is true in dimension three, or when the minimal log discrepancies of Kollár components are bounded from above. We conjecture that the minimal log discrepancies of Kollár components are always bounded from above, and verify it in dimension three when the local volumes are bounded away from zero. We also answer a question of Han, Liu and Qi on the relation between log canonical thresholds and local volumes.