论文标题

通过长尾数据的优化和机器学习进行手术调度

Surgical Scheduling via Optimization and Machine Learning with Long-Tailed Data

论文作者

Shi, Yuan, Mahdian, Saied, Blanchet, Jose, Glynn, Peter, Shin, Andrew Y., Scheinker, David

论文摘要

使用长期且高度可变的手术后住院时间(LOS)的心血管手术患者的数据(LOS),我们开发了一个建模框架,以减少恢复单元的充血。我们使用机器学习模型,使用各种优化模型来滚动程序估算LOS及其概率分布,并通过模拟估算性能。尽管获得了非常丰富的患者特征,但机器学习模型仅达到了适度的LOS预测准确性。与医院中使用的当前基于纸张的系统相比,大多数优化模型未能减少充血而没有增加手术的等待时间。保守的随机优化,具有足够的采样以捕获LOS分布的长尾巴的表现优于当前的手动过程以及其他随机和健壮的优化方法。这些结果突出了使用LOS的过度简化分布模型进行调度程序的危险,以及使用优化方法非常适合处理长尾行为的重要性。

Using data from cardiovascular surgery patients with long and highly variable post-surgical lengths of stay (LOS), we develop a modeling framework to reduce recovery unit congestion. We estimate the LOS and its probability distribution using machine learning models, schedule procedures on a rolling basis using a variety of optimization models, and estimate performance with simulation. The machine learning models achieved only modest LOS prediction accuracy, despite access to a very rich set of patient characteristics. Compared to the current paper-based system used in the hospital, most optimization models failed to reduce congestion without increasing wait times for surgery. A conservative stochastic optimization with sufficient sampling to capture the long tail of the LOS distribution outperformed the current manual process and other stochastic and robust optimization approaches. These results highlight the perils of using oversimplified distributional models of LOS for scheduling procedures and the importance of using optimization methods well-suited to dealing with long-tailed behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源