论文标题

介绍自己:由示例引导的生成面部介绍

Do Inpainting Yourself: Generative Facial Inpainting Guided by Exemplars

论文作者

Lu, Wanglong, Zhao, Hanli, Jiang, Xianta, Jin, Xiaogang, Yang, Yongliang, Wang, Min, Lyu, Jiankai, Shi, Kaijie

论文摘要

我们提出了一种新型的使用生成对抗网络的新型典范的面部介绍框架。我们的方法不仅可以保留输入面部图像的质量,而且还可以使用类似示例性的面部属性来完成图像。我们通过同时利用输入图像的全局样式,从随机潜在代码生成的随机样式以及示例图像的示例样式来实现这一目标。我们介绍了一个新颖的属性相似性指标,以鼓励网络以一种自我监督的方式从示例中学习面部属性的风格。为了确保跨地区边界之间的自然过渡,我们引入了一种新型的空间变体梯度反向传播技术,以根据空间位置调整损耗梯度。关于公共Celeba-HQ和FFHQ数据集的广泛评估和实际应用,可以验证Exe-GAN的优越性,从面部镶嵌的视觉质量来看。

We present EXE-GAN, a novel exemplar-guided facial inpainting framework using generative adversarial networks. Our approach can not only preserve the quality of the input facial image but also complete the image with exemplar-like facial attributes. We achieve this by simultaneously leveraging the global style of the input image, the stochastic style generated from the random latent code, and the exemplar style of exemplar image. We introduce a novel attribute similarity metric to encourage networks to learn the style of facial attributes from the exemplar in a self-supervised way. To guarantee the natural transition across the boundaries of inpainted regions, we introduce a novel spatial variant gradient backpropagation technique to adjust the loss gradients based on the spatial location. Extensive evaluations and practical applications on public CelebA-HQ and FFHQ datasets validate the superiority of EXE-GAN in terms of the visual quality in facial inpainting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源