论文标题

John-Nirenberg的抛物线BMO不平等现象

John-Nirenberg inequalities for parabolic BMO

论文作者

Kinnunen, Juha, Myyryläinen, Kim, Yang, Dachun

论文摘要

我们讨论与双线非线性抛物线偏微分方程相关的有界平均振荡功能空间的抛物面版本。抛物线约翰·尼伦贝格(John-Nirenberg)的不平等,给出了功能振荡的指数衰减估计值,在部分微分方程的自然几何形状中显示。链条论点用于改变抛物线约翰·尼伦贝格不平等的时间滞后。我们还表明,对于全球抛物线约翰 - 尼伦贝格不平等的全球抛物线不平等,Quasihyperbolic边界条件是必要且充分的条件。此外,我们考虑了约翰·尼伦贝格(John-Nirenberg)的中位数不平等,而不是积分平均值,并表明这种方法提供了与原始定义相同的功能。

We discuss a parabolic version of the space of functions of bounded mean oscillation related to a doubly nonlinear parabolic partial differential equation. Parabolic John-Nirenberg inequalities, which give exponential decay estimates for the oscillation of a function, are shown in the natural geometry of the partial differential equation. Chaining arguments are applied to change the time lag in the parabolic John-Nirenberg inequality. We also show that the quasihyperbolic boundary condition is a necessary and sufficient condition for a global parabolic John-Nirenberg inequality. Moreover, we consider John-Nirenberg inequalities with medians instead of integral averages and show that this approach gives the same class of functions as the original definition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源