论文标题

基于强硬木的连续Piatetski-shapiro Primes

Consecutive Piatetski-Shapiro primes based on the Hardy-Littlewood conjecture

论文作者

Guo, Victor Z., Yi, Yuan

论文摘要

piatetski-shapiro序列是$ {\ mathcal {n}}}^{(c)}的形式:=(\ lfloor n^c \ rfloor)_ {n = 1}^\ infty $,带有$ c> 1,c> 1,c \ in \ in \ in \ mathbb {在本文中,我们研究了连续的素数的$(p,p,p,p,p,p,p^{\#})$,以至于$ p \ in {\ mathcal {n}}}^{(c_1)} $ and $ p^{\ \#} \ in {对$(p,p,p^{\#})$的素数功能的猜想。我们提出了一个启发式论点来支持这一预测,该预测依赖于强烈的耐铁木材猜想的强烈形式。此外,我们证明了与具有复杂指数函数重量的单数序列平均值有关的命题。

The Piatetski-Shapiro sequences are of the form ${\mathcal{N}}^{(c)} := (\lfloor n^c \rfloor)_{n=1}^\infty$ with $c > 1, c \not\in \mathbb{N}$. In this paper, we study the distribution of pairs $(p, p^{\#})$ of consecutive primes such that $p \in {\mathcal{N}}^{(c_1)}$ and $p^{\#} \in {\mathcal{N}}^{(c_2)}$ for $c_1, c_2 > 1$ and give a conjecture with the prime counting functions of the pairs $(p, p^{\#})$. We give a heuristic argument to support this prediction which relies on a strong form of the Hardy-Littlewood conjecture. Moreover, we prove a proposition related to the average of singular series with a weight of a complex exponential function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源