论文标题

来自超快电子衍射和机器学习的声子传输的全景图

Panoramic mapping of phonon transport from ultrafast electron diffraction and machine learning

论文作者

Chen, Zhantao, Shen, Xiaozhe, Andrejevic, Nina, Liu, Tongtong, Luo, Duan, Nguyen, Thanh, Drucker, Nathan C., Kozina, Michael E., Song, Qichen, Hua, Chengyun, Chen, Gang, Wang, Xijie, Kong, Jing, Li, Mingda

论文摘要

理解声子热传输的一个核心挑战是缺乏研究基于模式的传输信息的实验工具。尽管计算的最新进展导致基于模式的信息,但它受到批量区域和界面中未知缺陷的阻碍。在这里,我们提出了一个框架,可以在异质结构中揭示微观声子传输信息,从而将最新的超快电子衍射(UED)与先进的科学机器学习相结合。利用UED中的双重时间和相互空间分辨率,我们能够可靠地恢复频率依赖性的界面透射率,并可能扩展到异质结构的频率依赖性松弛时间。这可以直接重建界面上实时,实时,频率分辨的声子动力学。我们的工作为实验探测声子传输机制提供了新的途径,并提供了前所未有的细节。

One central challenge in understanding phonon thermal transport is a lack of experimental tools to investigate mode-based transport information. Although recent advances in computation lead to mode-based information, it is hindered by unknown defects in bulk region and at interfaces. Here we present a framework that can reveal microscopic phonon transport information in heterostructures, integrating state-of-the-art ultrafast electron diffraction (UED) with advanced scientific machine learning. Taking advantage of the dual temporal and reciprocal-space resolution in UED, we are able to reliably recover the frequency-dependent interfacial transmittance with possible extension to frequency-dependent relaxation times of the heterostructure. This enables a direct reconstruction of real-space, real-time, frequency-resolved phonon dynamics across an interface. Our work provides a new pathway to experimentally probe phonon transport mechanisms with unprecedented details.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源