论文标题
Suslin树保护和俱乐部同构
Suslin tree preservation and club isomorphisms
论文作者
论文摘要
我们构建了一个集合理论的模型,其中存在Suslin树,并满足了任何两个正常的Aronszajn树(都不包含Suslin子树)都是俱乐部同构。我们还表明,如果$ s $是免费的普通Suslin树,那么对于任何正整数$ n $,都有C.C.C. $ s $是$ n $ free的强迫扩展,但其所有尺寸大于$ n $的衍生树都是特殊的。
We construct a model of set theory in which there exists a Suslin tree and satisfies that any two normal Aronszajn trees, neither of which contains a Suslin subtree, are club isomorphic. We also show that if $S$ is a free normal Suslin tree, then for any positive integer $n$ there is a c.c.c. forcing extension in which $S$ is $n$-free but all of its derived trees of dimension greater than $n$ are special.